Electromagnetic Wave Absorber Optimal Design Based on Improved Particle Swarm Optimization

نویسندگان

  • Heyong Liu
  • Ling Zhang
  • Yougang Gao
  • Yuanmao Shen
  • Dan Shi
چکیده

The optimal design of planar multilayered electromagnetic wave absorbers is presented. The optimization process is based on an improved particle swarm optimization (PSO). Assumed that the number of layers is given, in order to obtain an ideal absorber which is thin and has a low reflection coefficient within a wide band of frequencies, the thickness of each layer needs to be optimized as well that each layer needs to be chosen from a given material database. The problem is a classical optimization problem and the optimal design is to find the optimal solution. PSO in comparison with most of optimization algorithms such as Genetic Algorithms is simpler and faster. But the basic form of PSO may not obtain the optimal solution with complex problems. An improved PSO is applied to this design. Simulation results show the validity and effectiveness of this design method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

AN OPTIMAL FUZZY SLIDING MODE CONTROLLER DESIGN BASED ON PARTICLE SWARM OPTIMIZATION AND USING SCALAR SIGN FUNCTION

This paper addresses the problems caused by an inappropriate selection of sliding surface parameters in fuzzy sliding mode controllers via an optimization approach. In particular, the proposed method employs the parallel distributed compensator scheme to design the state feedback based control law. The controller gains are determined in offline mode via a linear quadratic regular. The particle ...

متن کامل

Optimal Design of Shell-and-Tube Heat Exchanger Based on Particle Swarm Optimization Technique

The paper studies optimization of shell-and-tube heat exchangers using the particle swarm optimization technique. A total cost function is formulated based on initial and annual operating costs of the heat exchangers. Six variables – shell inside diameter, tube diameter, baffle spacing, baffle cut, number of tube passes and tube layouts (triangular or square) – are considered as the design para...

متن کامل

OPTIMAL GROUND MOTION SCALING USING ENHANCED SWARM INTELLIGENCE FOR SIZING DESIGN OF STEEL FRAMES

Dynamic structural responses via time history analysis are highly dependent to characteristics of selected records as the seismic excitation. Ground motion scaling is a well-known solution to reduce such a dependency and increase reliability to the dynamic results. The present work, formulate a twofold problem for optimal spectral matching and performing consequent sizing optimization based on ...

متن کامل

AN EFFICIENT HYBRID ALGORITHM BASED ON PARTICLE SWARM AND SIMULATED ANNEALING FOR OPTIMAL DESIGN OF SPACE TRUSSES

In this paper, an efficient optimization algorithm is proposed based on Particle Swarm Optimization (PSO) and Simulated Annealing (SA) to optimize truss structures. The proposed algorithm utilizes the PSO for finding high fitness regions in the search space and the SA is used to perform further investigation in these regions. This strategy helps to use of information obtained by swarm in an opt...

متن کامل

Pareto Optimal Design Of Decoupled Sliding Mode Control Based On A New Multi-Objective Particle Swarm Optimization Algorithm

One of the most important applications of multi-objective optimization is adjusting parameters ofpractical engineering problems in order to produce a more desirable outcome. In this paper, the decoupled sliding mode control technique (DSMC) is employed to stabilize an inverted pendulum which is a classic example of inherently unstable systems. Furthermore, a new Multi-Objective Particle Swarm O...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009